Differential ATP requirements distinguish the DNA translocation and DNA unwinding activities of the Escherichia coli PRI A protein.

نویسندگان

  • M S Lee
  • K J Marians
چکیده

The Escherichia coli primosome is a mobile multiprotein DNA replication-priming apparatus that assembles at a specific site (termed a primosome assembly site (PAS] on single-stranded DNA-binding protein-coated single-stranded DNA. The PRI A protein (factor Y, protein n') is a PAS sequence-specific (d)ATPase as well as a DNA helicase and is believed to direct the assembly of the primosome at a PAS. In this report, the PRI A DNA helicase reaction is dissected in vitro, by use of a strand displacement assay, into three steps with distinct ATP requirements. First, the PRI A protein gains entry to the DNA via an ATP-independent, PAS sequence-specific binding event. Second, the PRI A protein translocates along the single-stranded DNA in the 3'----5' direction at a maximal rate of 90 nucleotides/s. DNA translocation requires ATP hydrolysis. The ATP concentration required to support half of the maximal translocation rate is 100 microM, which is identical to the Km for ATP of the PRI A protein DNA-dependent ATPase activity. Finally, the PRI A protein unwinds duplex DNA. The ATP concentration required for duplex DNA unwinding depends upon the length of the duplex region to be unwound. Displacement of a 24-nucleotide long oligomer required no more ATP than that required for the translocation of PRI A protein along single-stranded DNA, whereas displacement of a 390-nucleotide long DNA fragment required a 10-fold higher concentration of ATP than that required for oligomer displacement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The HRDC domain of E. coli RecQ helicase controls single-stranded DNA translocation and double-stranded DNA unwinding rates without affecting mechanoenzymatic coupling

DNA-restructuring activities of RecQ-family helicases play key roles in genome maintenance. These activities, driven by two tandem RecA-like core domains, are thought to be controlled by accessory DNA-binding elements including the helicase-and-RnaseD-C-terminal (HRDC) domain. The HRDC domain of human Bloom's syndrome (BLM) helicase was shown to interact with the RecA core, raising the possibil...

متن کامل

ATPase activity of Escherichia coli Rep helicase crosslinked to single-stranded DNA: implications for ATP driven helicase translocation.

To examine the coupling of ATP hydrolysis to helicase translocation along DNA, we have purified and characterized complexes of the Escherichia coli Rep protein, a dimeric DNA helicase, covalently crosslinked to a single-stranded hexadecameric oligodeoxynucleotide (S). Crosslinked Rep monomers (PS) as well as singly ligated (P2S) and doubly ligated (P2S2) Rep dimers were characterized. The equil...

متن کامل

ATP hydrolysis stimulates binding and release of single stranded DNA from alternating subunits of the dimeric E. coli Rep helicase: implications for ATP-driven helicase translocation.

DNA helicases are motor proteins that unwind duplex DNA during DNA replication, recombination and repair in reactions that are coupled to ATP binding and hydrolysis. In the process of unwinding duplex DNA processively, DNA helicases must also translocate along the DNA filament. To probe the mechanism of ATP-driven translocation by the dimeric E. coli Rep helicase along single stranded (ss) DNA,...

متن کامل

Identification and purification of a protein that stimulates the helicase activity of the Escherichia coli Rep protein.

A polypeptide (Mr = 15,000) has been purified from Escherichia coli cell extracts that significantly stimulates the duplex DNA unwinding reaction catalyzed by E. coli Rep protein. The Rep helicase unwinding reaction was stimulated by as much as 20-fold, upon addition of the stimulatory protein, using either a 71-base pair or a 343-base pair partial duplex DNA molecule as a substrate. The purifi...

متن کامل

Enzyme-catalyzed DNA unwinding: studies on Escherichia coli rep protein.

Replication in vitro of the replicative form (RF) I DNA of bacteriophage varphiX174 requires the phage-induced cistron A (cisA) protein, the host rep protein, DNA-binding protein, ATP, and DNA polymerase III plus replication factors. The rep protein is a single-stranded DNA-dependent ATPase. In this paper we show that varphiX174 RF I DNA cut by the cisA protein acts as a duplex DNA cofactor for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 265 28  شماره 

صفحات  -

تاریخ انتشار 1990